Best Proximity Point Theorems for a Berinde MT-Cyclic Contraction on a Semisharp Proximal Pair

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On best proximity points for multivalued cyclic $F$-contraction mappings

In this paper, we establish and prove the existence of best proximity points for multivalued cyclic $F$- contraction mappings in complete metric spaces. Our results improve and extend various results in literature.

متن کامل

On Best Proximity Pair Theorems and Fixed-point Theorems

The significance of fixed-point theory stems from the fact that it furnishes a unified approach and constitutes an important tool in solving equations which are not necessarily linear. On the other hand, if the fixed-point equation Tx = x does not possess a solution, it is contemplated to resolve a problem of finding an element x such that x is in proximity to Tx in some sense. Best proximity p...

متن کامل

Best Proximity Point Theorems for MT-K and MT-C Rational Cyclic Contractions in Metric Spaces

The purpose of this paper is to present a best proximity point theorems through rational expression for a combination of contraction condition, Kannan and Chatterjea nonlinear cyclic contraction in what we call MT-K and MT-C rational cyclic contraction. Some best proximity point theorems for a mapping satisfy these conditions have been established in metric spaces. We also give some examples to...

متن کامل

Best proximity pair and coincidence point theorems for nonexpansive set-valued maps in Hilbert spaces

This paper is concerned with the best proximity pair problem in Hilbert spaces. Given two subsets $A$ and $B$ of a Hilbert space $H$ and the set-valued maps $F:A o 2^ B$ and $G:A_0 o 2^{A_0}$, where $A_0={xin A: |x-y|=d(A,B)~~~mbox{for some}~~~ yin B}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in A$ such that $$d(G(x_0),F(x_0))=d(A,B).$$

متن کامل

On Best Proximity Point Theorems for New Cyclic Maps

In this paper, we first introduce the concept of MT − K condition. Some best proximity point theorems for mappings satisfying MT − K condition instead of K-cyclic mappings are established in metric spaces. Our results generalize and improve some main results in [5] and references therein. Mathematics Subject Classification: 54H25

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2018

ISSN: 0161-1712,1687-0425

DOI: 10.1155/2018/9510402